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Abstract

The goal of this work is to introduce new metrics to assess risk of Alzheimer’s disease (AD) which we call AD Pattern
Similarity (AD-PS) scores. These metrics are the conditional probabilities modeled by large-scale regularized logistic
regression. The AD-PS scores derived from structural MRI and cognitive test data were tested across different situations
using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. The scores were computed across groups of
participants stratified by cognitive status, age and functional status. Cox proportional hazards regression was used to
evaluate associations with the distribution of conversion times from mild cognitive impairment to AD. The performances of
classifiers developed using data from different types of brain tissue were systematically characterized across cognitive status
groups. We also explored the performance of anatomical and cognitive-anatomical composite scores generated by
combining the outputs of classifiers developed using different types of data. In addition, we provide the AD-PS scores
performance relative to other metrics used in the field including the Spatial Pattern of Abnormalities for Recognition of Early
AD (SPARE-AD) index and total hippocampal volume for the variables examined.
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Introduction

The development of biomarkers for early detection of

Alzheimer’s disease (AD) has become an area of intensive

research in neuroimaging and genetics. AD has no known cure

and is one of the ten main causes of death in US, making it a

leading public health concern and imposing a huge economic

burden on individuals and society. It is believed that the

neurodegenerative processes that lead to AD start many years

before the symptoms appear. Earlier detection of the disease

would allow earlier interventions and may provide clues to its

causes. The Alzheimer’s Disease Neuroimaging Initiative

(ADNI-1) project [1] collected laboratory, imaging, clinical,

cognitive, and genetic data on a large U.S. cohort between the

ages of 55 and 90 for 3 years with the goal of identifying

biomarkers for early detection of AD. Analyzing the massive

amount of information in neuroimaging and genetic datasets

such as ADNI is a challenging enterprise that poses great

difficulties to traditional statistical methods [2]. Machine

learning techniques are being increasingly used in the context

of research for early detection of AD because they are well-

suited to deal with high-dimensional data.

In this work we introduce new metrics for assessing AD risk

based on structural MRI (sMRI) and cognitive performance data

using large-scale machine learning methods. There are several

existing indices for AD risk assessment that often are generated by

severely reducing the dimensionality of imaging and/or genetic

data before applying a classification algorithm such as a support

vector machine (SVM). For example, the Spatial Pattern of

Abnormalities for Recognition of Early AD (SPARE-AD) index

[3,4] and the Structural Abnormality Index (STAND) score [5]

were introduced as sMRI-based metrics to detect AD-like

structural patterns that rely on image processing feature selection

strategies to provide a SVM with a few dozen, several hundreds or

thousands of features for final classification. A new index to assess

conversion to AD based on the AD Assessment Scale-Cognitive

subscale (ADAS-Cog) and Random Forests (RF) methods [6] was

recently proposed [7]. This is a composite score based on a

weighted average of ADAS-Cog subscores, which uses measures of

variable importance generated by RF as weights. Another
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composite score based on several cognitive tests available in ADNI

was recently introduced by [8] using psychometric theory. An

index based on multiple kernel learning (MKL) methods which

combines information from different data domains (e.g. MRI,

positron emission tomography (PET), and genetic and cognitive

data) was recently proposed [9]. MKL is a paradigm for data

fusion born in the field of genetics as an extension of SVMs [10–

12]. Instead of one kernel as in the classical SVM, a weighted sum

of kernels is computed where each type of information is encoded

by a different kernel and the weights are estimated by solving an

optimization problem [13,14]. Using the MKL decision function,

they generate scores called multi-modal disease markers

(MMDM).

We propose new metrics for assessment of AD risk based on

probabilities as modeled by high-dimensional regularized classifi-

ers. We have recently introduced an approach to automatic

classification of brain MRI images in AD that is based on large-

scale regularization [15]. Instead of combining dimension

reduction with SVM, we use regularized logistic regression

(RLR) based on a coordinate-wise descent technique as imple-

mented in the GLMNET library [16,17]. These classification

methods can operate directly in the voxel space using regulariza-

tion with sparsity properties. In previous work using ADNI data,

we compared this approach to a linear SVM voxel-based method

proposed by [18] which was one of the top performers when

discriminating MRI images of cognitively normal (CN) from AD

participants in a recent comparison of MRI data classification

methods in the field [19]. By examining intensive computational

experiments across different normalization templates, degrees of

smoothing, and sample sizes, we observed that regularized logistic

regression often performed at a similar or higher level when

discriminating CN ADNI participants from participants with AD

[15,20]. This suggested that an index for early detection of AD

based on class-conditional probabilities modeled by large scale

RLR might be a promising metric for assessment of AD risk. In

this study we evaluated the validity of these metrics which we

called ‘AD Pattern Similarity’ (AD-PS) scores in different

scenarios: (1) Associations with conversion from mild cognitive

impairment (MCI) to AD, (2) characterization of cognitive status

(CN, MCI and dementia), and (3) detection of effects caused by

age and functional status based on the Functional Assessment

Questionnaire (FAQ). We also studied the performance of a

composite cognitive-anatomical metric that assesses AD risk based

on information from both sources. Finally, we provided the

performance of the AD-PS scores relative to the SPARE-AD index

and the total hippocampal volumes in the different scenarios

described above.

Methods

ADNI database
The ADNI (adni.loni.ucla.edu) was launched in 2003 by the

National Institute on Aging, the National Institute of Biomedical

Imaging and Bioengineering, the Food and Drug Administration

(FDA), private pharmaceutical companies, and non-profit organi-

zations. Its primary goal was to test whether serial MRI, PET,

other biological markers, and clinical and neuropsychological

assessment could be combined to measure the progression of MCI

and early AD. Determination of sensitive and specific markers of

very early AD progression could help researchers and clinicians

develop new treatments and monitor their effectiveness, and

reduce the time and cost of clinical trials. The Principal

Investigator of this initiative is Michael W. Weiner, MD, VA

Medical Center and University of California – San Francisco.

ADNI recruited from over 50 sites across the U.S. and Canada.

The initial goal of ADNI was to recruit 800 adult participants, ages

55 to 90, composed of approximately 200 cognitively normal older

individuals to be followed for 3 years, 400 people with MCI to be

followed for 3 years, and 200 people with early AD to be followed

for 2 years. For up-to-date information about the cohort, see www.

adni-info.org.

Ethics Statement. We used ADNI-1 subject data collected

from 50 clinic sites. Ethics approval was obtained for each

institution involved including our Institutional Review Board at

Wake Forest Baptist Health. This study was conducted according

to Good Clinical Practice guidelines, the Declaration of Helsinki,

US 21CFR Part 50– Protection of Human Subjects, and Part 56–

Institutional Review Boards, and pursuant to state and federal

HIPAA regulations. Study subjects gave written informed consent

at enrollment for data collection, sample storage and subsequent

use of samples for research, and completed questionnaires

approved by each participating site’s Institutional Review Board.

The data were anonymized before being shared.

ADNI participants
For the present analysis, we used baseline structural MRI,

DNA, and cognitive data from 694 Caucasians. Of those, 188

were CN, 171 had AD, and 335 had MCI at baseline [21]. Among

the MCI cases, 153 converted to AD over 3 years of follow-up

(cMCI) and 182 remained stable (ncMCI). Cognitive evaluation of

77 ncMCI participants at 36 months or less was missing

(censored). Demographic information for the ADNI participants

is summarized in Table 1. The list of IDs is provided in the

supplementary materials (see Tables S3, S4, S5 and S6 in File S1).

Structural MRI data
We used baseline 1.5T T1-weighted MRI data as described in

the ADNI acquisition protocol [22]. The ADNI protocol acquires

2 sets of structural data at each visit that are rated for image

quality and artifacts by ADNI investigators [22]. To enhance

standardization across sites and platforms, the best quality data set

then undergoes additional pre-processing, including corrections

for gradient non-linearity [23] and intensity non-uniformity [24].

Table 1. Demographic data for the 694 ADNI participants,
shown across categories of clinical status.

CN cMCI ncMCI AD

Number 188 153 182 171

Age 75.9 (5.0) 75.0 (7.0) 75.2 (7.6) 75.5 (7.7)

Sex (M/F) 102/86 92/61 136/62 95/76

Educ. (years) 16.1 15.7 15.7 14.9

Hand (R/L) 173/15 142/11 164/18 159/12

BMI 26.4 (4.7) 25.4 (4.7) 26.2 (3.6) 25.6(3.9)

e4 (Y/N) 49/139 103/50 84/98 112/59

GDS 0.8 (1.13) 1.6 (1.4) 1.5 (1.4) 1.7 (1.4)

FAQ 0.1 (0.4) 5.4 (4.7) 2.7 (3.7) 13.1 (6.8)

MMSE 29.1 (1.0) 26.6 (1.7) 27.5 (1.8) 23.4 (2.0)

Changes in cognitive status occurred within 36 months of follow-up.
AD = Alzheimer’s disease; CN = cognitively normal; cMCI = mild cognitive
impairment in subjects who converted to AD; ncMCI = MCI subjects who
remained stable; BMI- Body mass index; GDS – Geriatric Depression Scale;
FAQ = Functional Assessment Questionnaire; MMSE = Mini-Mental State Exam.
doi:10.1371/journal.pone.0077949.t001
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In the present study, these optimally pre-processed images were

downloaded from the ADNI database and used for subsequent

analyses.

The images were segmented and normalized using the

Statistical Parametric Mapping (SPM) software package. Segmen-

tation of the original images into grey matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) was performed using the

NewSegment tool. Normalization was carried out using Diffeo-

morphic Anatomical Registration using the Exponentiated Lie

algebra (DARTEL) method [25]. First, a study-customized

template was generated including the 694 images using the

default parameters; then GM, WM, and CSF images were warped

to the template, modulated, and smoothed using an isotropic

Gaussian kernel of 4 mm. The final resolution of the images was

1.5 mm isotropic. The GM, WM and CSF images of all

participants were thresholded by using masks generated from the

respective GM, WM and CSF study-customized templates

(threshold = 0.5). Each mask contained 205245, 136967 and

66636 voxels respectively. The intersection of these masks was

empty in all cases. The images were then vectorized and stored in

three matrices of predictors where each row contained the imaging

information from one participant and each column contained the

information corresponding to one voxel. The SPARE-AD scores

for the ADNI participants described in Table 1 were provided by

Dr. Davatzikos whose staff posted the SPARE-AD indexes on the

ADNI website.

In addition, we used as a classical control measure in our

analyses, total hippocampal volume (THV). The data were

available in the ADNI website and generated using the software

for automated segmentation and parcellation FreeSurfer (FS) V4

[26,27]. FS automatically labels cortical and subcortical tissue

classes using an atlas-based Bayesian segmentation procedure

which extracts target regions volumes and cortical thickness, as

well as to total intracranial volume (ICV). Extracted Free-Surfer

values for two independently processed MP-RAGE images of the

same participant were averaged to create a mean value for

volumetric and cortical thickness measures for all target regions.

Cognitive and Functional Data
We used 25 cognitive scores from four memory tests (see

Table 2) available in ADNI at baseline that have been used in

previous work [7,8]: the AD Assessment Cognitive Scale (ADAS-

Cog), Rey Auditory Verbal Learning test (RAVLT), Logical

Memory test and Mini-Mental State Examination (MMSE). These

cognitive parameters were selected because a prominent feature of

AD is memory impairment. In addition, the ADAS-Cog and

MMSE are tests of global cognitive function, and they cover

several domains other than memory. The 25 scores were

concatenated into vectors that were used as input samples to our

classification methods. Information on function came from the

FAQ, a proxy-reported assessment of everyday functional abilities

associated with cognition. Previous ADNI research has studied its

relationships with longitudinal measures of glucose metabolism

obtained from PET data [28].

Machine learning methodology
In previous work we proposed the use of regularized logistic

regression (RLR) with elastic net regularization for high-dimen-

sional classification of AD sMRI images [15,20]. The RLR

method used here is based on the implementation provided by the

GLMNET library [16], which uses a very efficient optimization

technique called coordinate-wise descent technique [17]. The

general form of the optimization problem solved by the library is

of the form:

min
b0,b[Rp

C(b0,b,xi,yi)zlP(b)½ �, ð1Þ

C(b0,b,x,y)~
1

N

XN

i~1

yi(b0zxT
i b){log(1ze

b0zxT
i

b
� �

), ð2Þ

P(b)~
Xp

j~1

1{að Þ
2

b2
j za bj

�� ��� �
, ð3Þ

where xi[Rp is the ith sample or feature vector containing the ith

participant cognitive or MRI data, p is the number of variables

(voxels or cognitive scores) entering the analysis, yi[ 0,1f g is the ith

label (0 for cognitively normal participants, 1 for participants with

Alzheimer’s disease), b0,b[Rp are the parameters of the model,

and l is the regularization parameter. The regularization scheme

described by Eq.(1) contains two terms: a loss term C(b0,b,x,y)
and a penalty term P called elastic net penalty, which is given by

Eq.(3). The regularization parameter l establishes a trade-off

between the two terms and it is determined from the data using

cross-validation combined with grid search. Our software imple-

mentation is based on MATLAB, where the GLMNET library is

called using a freely available MATLAB wrapper developed by

Hui Jiang (http://www-stat.stanford.edu/,tibs/glmnet-matlab/).

Most computations were made on a LINUX computer with 16

CPUs and 96 GBs of RAM. We actively used parallel computing

features provided by the MATLAB parallel computing toolbox.

The AD-PS scores can be computed overnight using 15 CPUs.

Optimization of regularization parameters
To estimate the optimal values of the regularization parameters,

we combined a three-way split of the data (training-validation-

testing) with 10-fold cross-validations (CV) and grid search (see

Figure S1 in File S1). This was done to avoid upward bias in the

metrics of performance estimates [15,29,30]. We implemented an

Table 2. ADNI cognitive instruments used in this study.

Cognitive Tests and Scores

ADAS-Cog RAVLT

Q1 - Word recall Trial 1

Q2 - Commands Trial 2

Q3 - Construction Trial 3

Q4 - Delayed word recall Trial 4

Q5 - Naming Trail 5

Q6 - Ideational praxis Interference trial

Q7 - Orientation Immediate recall

Q8 – Word recognition 30 minutes delay

Q9 – Recall instruction recognition

Q10 – Spoken language Logical Memory

Q11 – Word finding Immediate

Q12 - Comprehension Delay

Q14 – Number cancellation MMSE

Total

doi:10.1371/journal.pone.0077949.t002
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external K1-fold CV where at each step we leave one fold for

testing and use the remaining K1-1 folds for training and

validation. These last two procedures are implemented by using

a nested K2-fold CV. We divide the K1-1 folds into K2 folds and

we leave one fold for validation and K2-1 folds for training

combined with a grid search to determine the optimal

parameters. The grid we used in our analyses was

l~0:5,1,5,10,11,12:::98,99,100,200,500,1000. For the sMRI

data, we fixed in advance one of the regularization parameters

(a~0:001) and optimized the second. We have observed in

practice working with high-dimensional imaging data that this

choice works well avoiding the heavier computational burden

related to the optimization of both parameters [20]. At each

grid point, the classifier is trained and its performance is

assessed using the fold left for validation by estimating the

classification accuracy. We select the regularization parameters

that produce maximum average accuracy across the K2 folds of

the internal CV procedure. The classifier is then retrained using

the data in the K1-1 folds left for training and validation and the

selected optimal regularization parameters. The classifier’s

generalization capability is then evaluated by computing the

classification accuracy, sensitivity and specificity using the fold

originally left for testing in the external CV. This is repeated

K1 times and the average classification accuracy is reported.

For cognitive data the procedure was similar, but since the

problem size is small, we optimized both parameters using

a two-dimensional grid (l same as above and

a~0:001,0:01,0:05,0:1,0:25,0:5,0:75,1:0). For each type of

data, the models were estimated 100 times to account for

variability due to random CV partitioning. In our analyses we

used K1 = 10 and K2 = 10.

Estimation of the AD-PS scores and discriminative maps
The estimation of the AD-PS scores and discriminative maps is

based on the CN and AD available in this study’s data. The

cognitive, GM, WM and CSF AD-PS scores for CN and AD

participants are estimated in the external loop of the CV

procedure described above to avoid overfitting. The scores for

MCI participants were estimated by providing the corresponding

data to the classifiers trained with all the available AD and CN

data. For each type of data the weights b̂b estimated after solving

the optimization problem defined by Eqs. (1–3) are replaced in the

classical logistic regression model formula for conditional proba-

bilities. The AD-PS score for a given individual will be:

AD-PS~Pr(Y~1=xi)~
1

1ze
b̂b0zxT

i
b̂b

where xi is the structural MRI or cognitive data of the i-th

participant. The probability Pr(Y~1=xi) is computed (in practice

we take the values returned by the GLMNET software) and the

median values of the 100 repetitions were taken as the final values

of the scores. Our AD-PS scores are measures of similarity of the

biological and clinical patterns (e.g. spatial brain tissue atrophy,

cognitive function, etc.) found in a given individual to those found

in AD patients.

Finally, voxel-based discriminative maps are generated. The

vector b of parameters described in Eqs. (1–3) are estimated using

the whole data set and the optimized values of the regularization

parameters. These parameters or weights (one per voxel) are then

employed to generate the discriminative maps which reflect the

brain areas that were more informative when discriminating

between the two groups of subjects. The discriminative maps

shown later represent the ratio of the average of the weights and

their standard deviations obtained across 100 repetitions of the

computations to account for variability due to CV partitioning.

The areas represented in blue correspond to the negative

parameters indicating brain regions associated with AD classifica-

tion, while the red ones indicate brain areas associated with CN

classification.

Machine learning and statistical analyses
First, we evaluated classifiers’ performance across different

cognitive groups: 1) CN versus AD; 2) CN versus cMCI; 3) CN

versus ncMCI; and 4) ncMCI versus cMCI. In each case RLR

models were estimated independently for GM, WM, CSF and

cognitive data using in each case all the available samples.

Classification accuracy, sensitivity and specificity were estimated

based on the nested CV method described above. To account for

variability due to CV partitioning, the process was repeated 100

times and the median values were reported.

Second, the cognitive and sMRI AD-PS scores for all the

subjects were computed as described in sections 2.5–2.7. We

evaluated the performance of the AD-PS scores across cognitive

status groups and for groups of ADNI participants stratified

according to age (,75 versus . = 75), and by the functional status.

We used a cutoff value of 2 to stratify participants by their FAQ

results. Discriminative maps for the different types of tissues were

generated. In addition, to assess associations of all metrics with the

distribution of times of MCI to AD conversion we performed

survival analyses based on proportional hazards regression using

SAS.

Finally, in all analyses described above, we evaluated two

composite metrics: 1) Anatomical AD-PS scores, which represent

the sum of GM, WM, and CSF probabilities; and 2) Cognitive-

anatomical AD-PS scores, which is the sum of the anatomical and

cognitive scores. Since our scores are probabilities, their combi-

nations can be interpreted as metrics defined in a unit

multidimensional hypercube. In Figure 1, a scheme illustrating

the probabilistic hypercube concept is presented. The probability

hypercube can be interpreted as a geometrical representation of

the output of a set of generative classifiers each one estimated with

different types of data. Each type of information defines a

dimension in the hypercube, and a set of AD-PS scores

corresponding to one individual defines a position inside.

Proximity to the corner (0,0,…0) is related to lower risk of AD,

while proximity to other corners is associated with increased

similarity between the patterns found in the given individual to

those found in AD patients, thus signaling a greater risk. In

particular, proximity of a given individual to the corner (1, 1,….,

1), which we call the ‘‘AD corner’’, is associated with risk of AD

across all sources of information. We provide from ADNI data two

dimensional (GM versus WM) examples illustrating the concept of

the probability hypercube. Statistical testing in the analyses

described above was performed in all cases using the two sample

Kolmogorov-Smirnov non-parametric test, which evaluates if the

samples were drawn from the same distribution. SPARE-AD and

total hippocampal volume performances were provided for

comparison in all analyses described above.

Results

Results of the first analyses are presented in Figure 2 and

Table 3. The highest accuracy rates for classifying participants

across all cognitive groups were achieved by cognitive classifiers.

This was expected, since the cognitive data were used to assign

participants into the clinical groups in advance which can be

AD Risk Assessment Using Machine Learning Methods
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considered a type of overfitting. A different situation is

discrimination of ncMCI and cMCI participants, since cognitive

testing was not used to create these groups. They were

determined by their change in classification over the 3 years

of follow-up. Consistent with previous reports [31,32] based on

SVM methods, the GM was more informative than other types

of brain tissues when discriminating CN versus AD. However,

when discriminating CN from ncMCI, GM and WM tissue

classifiers showed similar performance. In Table 3 we show

median values of classification accuracy, sensitivity and speci-

ficity across cognitive groups and type of brain tissue. Results for

classification based on cognitive testing are only shown for

discrimination of ncMCI from cMCI participants for the

reasons described above. In Figure 3 the GM, WM and CSF

tissue discriminative maps produced by regularized logistic

regression are presented in the first, second and third rows,

respectively. The blue areas are those associated with AD

classification, while the red ones are associated with CN

classification. In the GM maps, we observed as relevant to

classification several brain regions that have been widely

associated with AD such as the hippocampus, parahippocampal

gyrus, medial temporal lobe, thalamus and parietal lobe. The

WM maps show areas in the temporal lobe adjacent to temporal

lobe areas highlighted in the GM maps (e.g. parahippocampal

gyrus), anterior and posterior corpus callosum while the CSF

maps show clearly the ventricles.

The AD-PS scores significantly distinguished participants

grouped according to clinical status (see Table 4). All AD-PS

scores showed a clear increasing trend with poorer cognitive

status. In Table 5 the results of the survival analyses are

presented. The AD-PS composite cognitive-anatomical score

was more strongly associated with MCI to AD conversion times

and the machine learning generated scores (e.g. AD-PS and

SPARE-AD) showed often stronger associations than the more

conventional total hippocampal volume. In Tables 6–7, we

present results of the estimation of the AD-PS scores for subjects

stratified by age, and FAQ scores for each clinical group,

respectively. The GM, WM and CSF scores often detected

significantly greater AD-like patterns in participants over 75

years, while the cognitive scores did not reflect significant

differences AD-like cognitive patterns. Finally, we observed

significantly greater AD-like cognitive, GM and WM patterns in

ncMCI with FAQ values above 2, while AD patients with FAQ

values above 2 showed increased AD-like patterns in GM, WM

and CSF tissues.

In Figure 4, the concept of the probability hypercube is

illustrated using ADNI data. The spatial distribution inside a two

dimensional GM versus WM hypercube of 188 CN and 171 AD

ADNI participants according to their AD-PS scores is presented.

CN and AD participants tended to cluster towards different

corners in the plots. Most of the CN subjects (blue starts) were

located closer to the (0, 0) corner, a zone of lower risk, while the

AD patients (red circles) were closer to the corner (1, 1), an area of

higher risk. Interestingly, some AD participants had low anatom-

ical risk and some CN participants had high risk. Also, in a four

dimensional (GM-WM-CSF-Cognitive) hypercube, we observed

that 85% of the MCI subjects inside the area of lower risk (,0.5

for all types of data) remained stable, while 76% of the MCI

participants inside the area of higher risk (.0.5 for all types of

data) progressed to AD. However, the MCI subjects falling in these

two areas represented only 37% of the total number of MCI

subjects in our study.

Figure 1. The concept of a probabilistic hypercube is illustrated. The probability hypercube can be interpreted as a geometrical
representation of the output of a set of generative classifiers, each one estimated with different types of data. The set of AD-PS scores corresponding
to a given individual define a position inside a unit hypercube. The position inside the hypercube for three individuals is illustrated.
doi:10.1371/journal.pone.0077949.g001
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Discussion

The main goal of this analysis was to introduce and test new

metrics for assessment of AD risk. Similar metrics, such as the

SPARE-AD and STAND score [3,5], have been proposed

previously to detect AD-like abnormalities using structural MRI

data. Both are based on the use of SVMs combined with severe

dimension reduction measures. Alternatively, our AD-PS scores

are based on the solution of classification problems of very large

size via the use of logistic regression with sparsity regularization.

We used the conditional probabilities modeled by large-scale

regularized logistic regression as metrics, describing the similarity

of the anatomical patterns found in a given individual to those

found in AD patients. Despite the high dimensionality of the voxel

space, our approach is relatively fast. Furthermore, due to the

elastic net regularization, it produces voxel-based and sparse

discriminative maps indicating the brain areas more relevant to

prediction. In addition, we have extended the approach to

cognitive data. The AD-PS cognitive scores are composite scores

that detect AD-like anomalies based on cognitive scores taken

from several memory tests in ADNI. Previously, composite

cognitive scores to assess AD risk have been proposed by others

[7,8], but using a different rationale. While we used the

conditional probabilities generated by regularized logistic regres-

sion, they used RF and psychometric theory methods to generate

composite scores. Our scores, instead of providing a measure of

the cognitive function in a more classical sense, are similarity

measures of the cognitive patterns found in a given individual to

those found in AD patients. The AD-PS cognitive scores often did

not capture significant differences across age groups within a given

cognitive status, which could be a consequence of the cognitive

information being used to generate the cognitive groups. In

Table 4, AD-PS cognitive scores tended to be close to zero and

close to one for CN and AD participants, respectively. However,

we still found significant correlations of the ncMCI, cMCI and AD

participants’ AD-PS cognitive scores with their corresponding

THV and SPARE-AD scores (see Tables S1–S2 in File S1) and

very strong associations with time of MCI to AD conversion. AD-

PS cognitive scores also indicated significantly greater risk of AD

in ncMCI participants with more impaired functional status. We

expect that longitudinal follow-up may provide a better reflection

of age-related cognitive change. The approach is not limited in

any way to the 25 cognitive outcome measures we selected here to

illustrate the concept. We will incorporate other cognitive tests

(e.g. executive function) available through ADNI in the future.

We systematically evaluated the relevance of different types of

brain tissue when discriminating cognitive status groups in the

voxel space. If we take as a reference recent work in the ADNI

literature [19,33], our results for GM compare very well to those

reported for SVM methods. Our approach did less well when

discriminating ncMCI from cMCI, but other sMRI-based

methods did not do much better in the studies noted above. In

fact, classification methods based on the voxel space in [19]

performed worse than our RLR approach, but the ROI-based

ones did better in terms of sensitivity and specificity. This is a

Table 3. Median values of classification accuracy, sensitivity
and specificity across cognitive groups are presented.

Classification Case Information Accuracy Sensitivity Specificity

GM 87.1 84.3 88.9

CN versus AD WM 79.6 76.8 82.6

CSF 74.6 70.6 78.0

GM 81.5 74.0 88.1

CN versus cMCI WM 72.3 66.3 78.9

CSF 63.9 50.4 74.2

GM 63.0 58.6 68.1

CN versus ncMCI WM 61.4 58.2 65.5

CSF 56.8 49.9 64.2

Cognitive 64.5 57.9 70.1

ncMCI versus cMCI GM 61.5 45.8 75.5

WM 57.4 35.7 76.9

CSF 53.4 31.2 73.1

Results for cognitive data-based classifiers are only shown for cMCI versus
ncMCI classification. In other situations, their performance is close to 100%
because cognitive data have been used to generate the cognitive groups in
advance.
doi:10.1371/journal.pone.0077949.t003

Figure 2. RLR classifier performances across different types of information and cognitive groups. Consistent with previous reports, grey
matter (GM) tissue was more informative than white matter (WM) and cerebrospinal fluid (CSF). Interestingly, this difference decreases when a group
with less severe cognitive decline is compared with the cognitively normal (CN) group.
doi:10.1371/journal.pone.0077949.g002
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situation of great clinical importance that very likely requires the

inclusion of other types of data (e.g. PET, amyloid biomarkers,

etc.) for better discrimination, combined with dimension reduction

such as using ROI data [34] and principal component analysis

[35] or much larger sample sizes for methods based on voxel space

like ours. The comparisons we made to previous work must be

interpreted with caution, because CV procedures and sample sizes

were different from ours. Meaningful statements about relative

performance only can be made when the methods are tested under

the same conditions, as done by Cuingnet and colleagues [19].

Tables 8–9 contain information about relative performance of

different methods in the literature together with details about

sample size, CV technique and normalization method. These

tables highlight the great variety of conditions based on which

metrics of classifier performance were estimated. Table 10 reports

results related to detection of differences between ncMCI and

cMCI participants of the ADNI dataset using machine learning

generated metrics and statistical testing. The results reported by

Hinrichs and colleagues differ in terms of types of data and

statistical testing, sample sizes, and time of conversion from MCI

to AD, which makes their results difficult to compare directly to

ours.

Our approach generates discriminative maps at a voxel level

which uncover brain regions that have been associated with AD

before (e.g. hippocampus, parahippocampal gyrus, etc.). They are

similar in interpretation to those generated by a linear SVM [18]

but while those are dense, ours due to the elastic net regularization

are sparse pinpointing brain regions relevant to classification.

Exploratory voxel-wise analyses (not presented) showed that the

blue areas correspond to brain regions with significant decreases of

tissue volume (tissue atrophy). The interpretation of the red areas

is more subtle. Two sample SPM t-tests in GM produced

significant results mostly in areas located in the boundary of

GM and CSF, which are known to be challenging for

segmentation algorithms [36]. Vemuri et al. 2008 suggested that

the presence of these areas is the result of noise in the data due to

partial volume effects, segmentation and registration errors, etc.

This issue requires further study.

Figure 3. The GM, WM and CSF discriminative maps produced by logistic regression with sparsity regularization are overlaid on the
study customized template generated by DARTEL. In each case, nine coronal slices (282, 268, 252, 238, 222, 28, 8, 22, 38) are shown
(neurological convention) in the first, second, and third rows, respectively. The blue areas are associated with AD classification, while the red ones are
associated with CN classification.
doi:10.1371/journal.pone.0077949.g003
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There is a growing body of literature indicating increasing

interest in the role of white matter in AD [37–41]. Several studies

have identified volume loss in various portions of the corpus

callosum as related to AD [42]. The callosal white matter loss has

been related to Wallerian degeneration, receiving axons from the

temporo-parietal regions involved in AD. In the field of imaging

genetics, interest in WM is also growing. Several groups are

beginning to report associations of apolipoprotein E and other

genetic markers with WM tissue integrity and atrophy [43–45].

However, often machine learning studies in the literature have

focused on the role of GM, whole brain or ROI, and the roles of

WM and CSF have been less investigated. In our study, similar to

previous reports, we found GM to be more discriminative when

classifying CN versus AD subjects. However, relative performance

of WM with respect to GM increased when the CN group was

compared to a group with less severe cognitive status than AD.

Table 4. Median AD-PS scores by type of information, SPARE-AD index and total hippocampal volume at baseline are presented.

scores CN ncMCI p-value

AD-PS Cognitive 0.008 0.58 5.6*10
254

AD-PS GM 0.16 0.41 4.8*10211

AD-PS WM 0.29 0.43 1.3*10210

AD-PS CSF 0.36 0.39 9.0*1023

AD-PS Anatomical 0.75 1.24 3.4*10211

AD-PS Composite 0.79 1.83 6.7*10230

SPARE-AD 21.43 0.33 4.2*10252

THV 7326 6523 2.4*1028

scores ncMCI cMCI p-value

AD-PS Cognitive 0.58 0.89 6.4*1028

AD-PS GM 0.41 0.69 3.6*10210

AD-PS WM 0.43 0.58 2.7*1026

AD-PS CSF 0.38 0.56 1.1*10
24

AD-PS Anatomical 1.24 1.79 2.9*10
28

AD-PS Composite 1.83 2.54 1.2*10
210

SPARE-AD 0.33 1.11 1.9*10
29

THV 6523 5904 1.1*1026

scores cMCI AD p-value

AD-PS Cognitive 0.89 0.99 1.8*10
228

AD-PS GM 0.69 0.84 1.1*10
23

AD-PS WM 0.58 0.72 2.9*10
23

AD-PS CSF 0.56 0.66 2.0*1023

AD-PS Anatomical 1.79 2.15 4.1*10
25

AD-PS Composite 2.54 3.14 1.1*10
27

SPARE-AD 1.11 1.35 0.03

THV 5904 5478 1.9*1022

doi:10.1371/journal.pone.0077949.t004

Table 5. Results from proportional hazards regression to assess associations with the distribution of times until conversion to AD.

Factor Hazard Ratio Per 1 SD Unit in Score 95% Confidence Interval z-statistic P-value

AD-PS Cog scores 2.126 1.720, 2.627 6.981 1.47*10212

AD-PS GM scores 1.803 1.512, 2.150 6.562 2.7*10211

AD-PS WM scores 1.391 1.185, 1.633 4.028 2.8*1025

AD-PS CSF scores 1.391 1.184, 1.635 4.005 3.1*1025

Anatomical 1.643 1.395, 1.935 5.944 1.4*1029

Composite 1.968 1.651, 2.346 7.554 2.1*10214

SPARE-AD 1.763 1.480, 2.101 6.339 1.6*10210

THV 1.597 1.344, 1.894 5.339 4.7*1028

doi:10.1371/journal.pone.0077949.t005
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When discriminating MCI subjects with stable cognitive status

from CN subjects, GM and WM classifiers’ performance is similar.

This suggests that WM could play a more important role in early

stages of AD than previously thought. Interestingly, for CN

participants the WM AD-PS scores were greater than their

corresponding GM counterparts (see Table 4), a trend that still can

be observed in ncMCI participants but not in cMCI or AD

participants, whose AD-like anomalies are much greater in GM

than in WM. Similar observations were made for CN subjects

across age groups. WM AD-PS scores showed more significant

differences between age groups than the corresponding GM AD-

PS scores (see Table 6). Interestingly, our discriminative maps

show adjacency of WM and GM patterns of atrophy, especially in

the temporal lobe, a brain region believed to be affected early by

AD. Thus, although AD has been traditionally thought to be

predominantly a disease of GM tissue, our findings support

previous reports that suggest a role of the WM in early stages of

the disease [46,47].

We proposed here metrics for AD risk assessments which

integrate information from different sources by combining

probabilities generated by classifiers. Similar ideas have been

used previously in face and voice recognition based on Bayesian

theory [48]. The probability hypercube concept that we have

introduced can be interpreted as a geometrical representation of

the output of a set of generative classifiers, each one estimated

with different types of data. It is intuitive, it provides a natural

environment to generate multimodal metrics for AD detection,

and it can be a powerful paradigm to visualize information in a

clinical AD database such as ADNI. Two- or three-dimensional

graphics of the AD-PS scores can offer researchers and

clinicians a quick intuitive understanding of how the partici-

pants are located according to given biomarkers indicating AD-

like abnormalities, and also to locate groups of participants

whose assigned cognitive status does not correspond to the

estimated risk.

Here the AD-PS scores were estimated using cognitive and

structural data independently. We generated combinations of the

scores to seek a composite cognitive-anatomical metric for AD risk

assessment with increased performance compared with metrics

based on a specific source of information. While many different

composite metrics could be devised, in this work we used the sum

of the scores across sources of information to illustrate the concept.

In some situations, our composite metrics improved detection of

differences of distributions between clinical groups, such as ncMCI

from cMCI participants, but very often it did not. This could

suggest that collapsing all the multimodal information in a single

score may not always be useful and/or the non-optimality of the

composite metric used here.

Table 6. Median values of AD-PS scores, SPARE-AD index and total hippocampal volume were estimated across cognitive status
categories for ADNI participants, based on age (,75 yrs., vs. $75 yrs.).

CN ncMCI cMCI AD

Age (#subjects) ,75 (86) . = 75 (102) p-value ,75 (102) . = 75(80) p-value ,75 (68) . = 75 (85) p-value ,75 (75) . = 75 (96) p-value

Cog 0.009 0.007 0.86 0.56 0.61 0.53 0.87 0.89 0.55 0.99 0.99 0.4

GM 0.09 0.22 0.0004 0.31 0.44 0.02 0.60 0.76 0.004 0.78 0.85 0.45

WM 0.20 0.31 0.0001 0.39 0.47 0.03 0.54 0.68 0.001 0.63 0.76 0.004

CSF 0.24 0.33 0.002 0.29 0.42 0.01 0.43 0.67 0.0008 0.61 0.73 0.009

Anatomical 0.57 0.91 4.5*1026 1.1 1.4 0.004 1.5 2.1 7.6*1025 2.1 2.2 0.07

Composite 0.60 0.93 6.7*1026 1.7 1.9 0.003 2.3 2.9 1.5*1024 3.1 3.20 0.08

SPARE-AD 21.48 21.31 0.1 0.05 0.57 2.4*1024 0.88 1.37 1.6*1023 1.22 1.39 0.034

THV 7674 7060 4.7*1024 6858 6240 2.4*1024 6226 5561 3.8*1024 5684 5245 0.007

AD-PS Anat. stands for anatomical score (GM+WM+CSF).
doi:10.1371/journal.pone.0077949.t006

Table 7. Median values of AD-PS scores, SPARE-AD index and total hippocampal volume were estimated across clinical groups by
functional status (FAQ#2 v. .2).

Metrics ncMCI cMCI AD

= ,2(70) .2(112) p-value = ,2(52) .2(101) p-value = ,2(10) .2(161) p-value

Cog 0.45 0.74 0.02 0.89 0.87 0.85 0.98 0.99 0.30

GM 0.36 0.46 0.03 0.69 0.68 0.73 0.56 0.84 0.016

WM 0.41 0.49 0.01 0.62 0.57 0.39 0.60 0.72 0.11

CSF 0.35 0.42 0.22 0.52 0.57 0.37 0.52 0.66 0.35

Anatomical 1.14 1.38 0.03 1.83 1.80 0.86 1.77 2.16 0.18

Composite 0.65 2.09 4.5*1023 2.54 2.50 0.98 2.66 3.15 0.03

SPARE-AD 0.24 0.62 0.037 1.18 1.09 0.89 1.03 1.36 0.13

THV 6712 6281 0.052 5893 5928 0.63 6479 5337 2.4*1024

Data for CN is not presented because all CN subjects except one had FAQ scores below 2. Numbers of subjects in each group are indicated in parentheses.
doi:10.1371/journal.pone.0077949.t007
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The AD-PS and SPARE-AD scores very often detected more

significant differences between groups than THV. Although in

general the AD-PS scores often produced more significant

results, in several situations they were outperformed by the

SPARE-AD scores and THV. These relative results do not

represent a rigorous comparison of these three metrics. For

example, the AD-PS and SPARE-AD scores are estimated

using different image processing approaches, sample sizes and

smoothing kernels. On the other hand, the THV used here

were based on FreeSurfer estimates; there are other estimators

available that were not tested here that could be more

accurate. The SPARE-AD and THV performances were

instead provided as a reference to help assess and validate

the AD-PS scores. Additional information about correlations of

the three metrics across cognitive groups can be found in

Tables S1 and S2 in File S1.

Our study has several limitations. A potential confounding

factor here is the quality of the brain tissue segmentation.

Although we made an effort to generate masks covering each

type of tissue, there could be overlap among areas. We centered

our analyses on the use of only sMRI and cognitive data because

these were available for most ADNI-1 participants at baseline. In

the future, we will estimate the AD-PS scores for amyloid PET

imaging, amyloid and tau levels in CSF, etc. Our composite

cognitive scores included only a portion of the cognitive data

available in ADNI: memory scores. We chose these parameters

because of their well-documented association with AD and their

use in previous work by other researchers. We will include

additional cognitive information in the future. High performance

of cognitive data-based classifiers is in large part the result of these

data being used to define cognitive groups in advance, which gives

these classifiers an unfair advantage. Our sMRI AD-PS scores

were based on images normalized using DARTEL; although this is

a method easy to use and less time-consuming than other methods

in the field, it may not be the best option. We expect significant

improvements of AD-PS anatomical scores by using more

sophisticated normalization methods. It is very likely the AD-PS

scores will benefit from increasing the sample size, which could be

implemented by integrating the ADNI databases to be available

worldwide in the coming years [1]. The sum composite metric

Figure 4. Two-dimensional probabilistic hypercube views of ADNI data showing AD-PS grey matter (GM) and white matter (WM)
scores for 188 cognitively normal (CN – blue stars) and 171 Alzheimer’s disease (AD) patients (red circles). They tended to cluster in
different corners, as expected.
doi:10.1371/journal.pone.0077949.g004
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Table 8. Summary of classification reports of CN versus AD subjects based on structural MRI data from different groups.

MLM Info SS NM CV Method Acc Sens Spec

RLR – Casanova et al. GM -voxels 359 (188 CN) -ADNI DARTEL Ten folds with three-ways-split – 100
repetitions

87.1 84.3 88.9

Linear SVM Chu et al. 2012 GM-voxels 262 (131CN) - ADNI DARTEL Leave one out 84.3 NA NA

Linear SVM –Cuignet.et al. 2011 GM- voxels 182 (81 CN) -ADNI DARTEL Two fold (137 for testing) with fixed
partitioning

NA 81 95

Linear SVM - Zhang et al. 2011 93 anatomical ROIs 103 (52 CN) - ADNI HAMMER Ten folds with three-ways-split – 10
repetitions

86.2 86.0 86.3

Vemuri et al. 2008 GM+WM+CSFVoxels* 280 (140 CN) –Mayo
clinic

SPM5
methods

Two fold (100 for testing) with fixed
partitioning

NA 86.0 86.0

COMPARE - Fan et al. 2008. GM+WM+CSF 122 (66 CN) - ADNI HAMMER Leave one out 94% NA NA

COMPARE - Cuignet.et al. 2011 GM 182 (81 CN) -ADNI DARTEL Two fold (137 for testing) with fixed
partitioning

NA 82.0 89.0

Logistic Regression –Teipel et al.
2007

GM+WM - PCA 50 (18 CN) SPM2
methods

None 83.0 88.0 78.0

MLM = Machine Learning Method; SS = Sample size; NM = Normalization Method; CV = Cross-validation,
*-Images were downsampled.
doi:10.1371/journal.pone.0077949.t008

Table 9. Summary of classification reports of ncMCI versus cMCI subjects based on structural MRI data from different groups.

MLM Info SS NM CV Method Acc Sens Spec

RLR – Casanova et al. GM -voxels 335 (182 cMCI) -ADNI DARTEL Ten folds with three-ways-split – 100
repetitions

63.0 58.6 68.1

Linear SVM Chu et al. 2012 Voxels in ROI 180 (90 ncMCI) - ADNI DARTEL Leave one out 65.0 NA NA

Linear SVM Chu et al. 2012 GM-voxels 180 (90 ncMCI) - ADNI DARTEL Leave one out 58.0 NA NA

Linear SVM –Cuignet.et al. 2011 GM- voxels 106 (39 cMCI) -ADNI DARTEL Two fold (104 for testing) with fixed
partitioning

NA 0 100

COMPARE - Misra et al. 2009. GM+WM+CSF 103 (76 ncMCI) - ADNI HAMMER Leave one out 81.5 NA NA

COMPARE - Cuignet.et al. 2011 GM 106 (39 cMCI) -ADNI DARTEL Two fold (137 for testing) with fixed
partitioning

NA 62.0 67.0

Logistic Regression –Teipel et al. 2007 CSF - PCA 24 (9 ncMCI) SPM2 methods None 80 67 93

MLM = Machine Learning Method; SS = Sample size; NM = Normalization Method; CV = Cross-validation.
doi:10.1371/journal.pone.0077949.t009

Table 10. Results related to detection of differences between ncMCI from cMCI ADNI participants based on statistical testing and
imaging data.

Scores Info SS p-values

AD-PS – Casanova et al. GM –voxels (ADNI) 335 (182 ncMCI) -ADNI 3.6*10210

AD-PS – Casanova et al. Anatomical (ADNI) 335 (182 ncMCI) -ADNI 2.9*1028

SPARE-AD –Casanova et al. GM+WM+CSF (ADNI) 335 (182 ncMCI) -ADNI 1.9*1029

*MMDM – Hinrichs et al. 2011 MRI+PET (ADNI) 119 MCI – ADNI 1.8*1026

Hinrichs et al. compared means using a t-test instead of distributions as we have done in this work.
*MCI to AD conversion was within a year of follow-up.
doi:10.1371/journal.pone.0077949.t010
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chosen here assigns similar weights to different modalities, which is

very likely non-optimal. We will evaluate in the future different

metrics defined within the probability hypercube. Also, we did not

adjust for multiple comparisons in our analyses, but we often

observed the expected trends in the values of the scores across

clinical severity and groups of participants ordered by higher risk.

To evaluate performance of the scores, we used the Kolmogorov-

Smirnov two-sample test, which is only one of several possible

choices. Censored ncMCI cognitive data were only considered in

the survival analyses. If some of those censored ncMCI

participants converted to AD within 36 months, other ncMCI

versus cMCI discrimination results are very likely slightly worse

than they should be. Finally, one of the regularization parameters

was fixed empirically to avoid additional computations. A finer

selection could lead to further improvements of the results

presented here.

Conclusion

Our analyses provided evidence of the validity of the AD-PS

scores. In general the AD-PS scores distinguished well between

AD-like cognitive and anatomical patterns across clinical status, as

seen in the gradient of values across clinical groups ordered by

severity. The structural AD-PS scores often detected greater AD-

like abnormalities in older and less functional ADNI participants

according to the FAQ. The differences in AD-like patterns

detected by the AD-PS scores were always in the expected

directions across cognitive status, age and functional groups. In

addition, they also were consistent with directions detected by

other known metrics such as SPARE-AD and THV. The survival

analyses showed that the AD-PS scores are strongly associated to

the MCI to AD conversion times. The AD-PS metrics can be a

powerful tool in AD research to detect AD-like cognitive and

anatomical effects across given groups of subjects stratified by

clinical, risk factors or intervention groups. Finally, the approaches

presented here can be extended to other neurodegenerative

diseases such as Parkinson’s, amyotrophic lateral sclerosis, etc.

This will be the subject of future work.

Supporting Information

File S1 File S1 contains supplementary materials.
Figure S1. The CV procedure with nested 10 fold CV is

illustrated. The RLR model is estimated for all different values

of the grid (alpha is fixed in our case) using the internal training

data. The values of the regularization parameters that produced

maximum accuracy when tested on the internal testing dataset

are recorded. The process is repeated 10 times using different

internal folds as testing dataset. At the end the average value of

the recorded regularization parameters is computed and the

RLR model is recomputed using the external training data set.

The external testing dataset is used to estimate classification

accuracy, sensitivity and specificity which are recorded. The

above process is repeated ten times across the ten external folds

and the final estimator of the three metrics is computed as their

average across the ten external folds. Table S1. Correlations

(p-values) between AD-PS and SPARE-AD scores across

cognitive statuses computed using the Spearman’s rank sum

test are presented. Table S2. Correlations (p-values) between

AD-PS and SPARE-AD scores and THV across cognitive

statuses computed using the Spearman’s rank sum test are

presented. Table S3. The IDs of the 188 CN participants are

listed. Table S4. The IDs of the 171 participants are listed.

Table S5. The IDs of the 153 MCI converters participants are

listed. Table S6. The IDs of the 182 MCI non-converters

participants are listed.
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